Share this post on: Confer HIV DYRK2 Formulation resistance In Vivo Schleifman et al. Confer HIV Resistance In Vivo Schleifman et al.R. Pfeiffer Fellowship and NIH predoctoral Genetics instruction grant T32 GM007499 (to E.B.S), Ministry of Information Economy under the KORUS Tech Plan KT-2008-NTAPFS0-0001 (to P.K.), NIGMS Health-related Scientist Education Plan T32GM07205 (to N.A.M.) and F30HL110372 in the National Heart, Lung, and Blood institute (to N.A.M.), along with the content is solely the duty from the authors and will not necessarily represent the official views of the funding organizations.1. two. 3. 4. 5. Samson, M, Libert, F, Doranz, BJ, Rucker, J, Liesnard, C, Farber, CM et al. (1996). Resistance to HIV-1 infection in caucasian folks bearing mutant alleles from the CCR-5 chemokine receptor gene. Nature 382: 72225. Liu, R, Paxton, WA, Choe, S, Ceradini, D, Martin, SR, Horuk, R et al. (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed folks to HIV-1 infection. Cell 86: 36777. H ter, G, Nowak, D, Mossner, M, Ganepola, S, M sig, A, Allers, K et al. (2009). Longterm manage of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360: 69298. Allers, K, H ter, G, Hofmann, J, Loddenkemper, C, Rieger, K, Thiel, E et al. (2011). Proof for the remedy of HIV infection by CCR532/32 stem cell transplantation. Blood 117: 2791799. Caspase 7 Biological Activity Ioannidis, JP, Rosenberg, PS, Goedert, JJ, Ashton, LJ, Benfield, TL, Buchbinder, SP et al.; International Meta-Analysis of HIV Host Genetics. (2001). Effects of CCR5-Delta32, CCR264I, and SDF-1 3’A alleles on HIV-1 illness progression: An international meta-analysis of individual-patient information. Ann Intern Med 135: 78295. O’Brien, SJ and Nelson, GW (2004). Human genes that limit AIDS. Nat Genet 36: 56574. Schleifman, EB, Bindra, R, Leif, J, del Campo, J, Rogers, FA, Uchil, P et al. (2011). Targeted disruption from the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 18: 1189198. McNeer, NA, Chin, JY, Schleifman, EB, Fields, RJ, Glazer, PM and Saltzman, WM (2011). Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 19: 17280. McNeer, NA, Schleifman, EB, Cuthbert, A, Brehm, M, Jackson, A, Cheng, C et al. (2013). Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates sitespecific genome editing of human hematopoietic cells in vivo. Gene Ther 20: 65869. Visscher, GE, Robison, RL, Maulding, HV, Fong, JW, Pearson, JE and Argentieri, GJ (1985). Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J Biomed Mater Res 19: 34965. Lucotte, G (2002). Frequencies of 32 base pair deletion on the (Delta 32) allele on the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative evaluation. Infect Genet Evol 1: 20105. Bashir, A, Volik, S, Collins, C, Bafna, V and Raphael, BJ (2008). Evaluation of paired-end sequencing methods for detection of genome rearrangements in cancer. PLoS Comput Biol 4: e1000051. Perez, EE, Wang, J, Miller, JC, Jouvenot, Y, Kim, KA, Liu, O et al. (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing working with zinc-finger nucleases. Nat Biotechnol 26: 80816. Pearson, T, Greiner, DL and Shultz, LD (2008). Creation of “humanized” mice to study human immunity. Curr Protoc Immunol Chapter 15: Unit 15.21. Allain, JP, Laurian, Y, Paul, DA, Verroust, F, Leuther, M, Gazengel, C et al. (1987). Longter.

Share this post on: